Introduction to Software Defined Radio (SDR 101)

SAARS - 3/7/2023

Franco Venturi - K4VZ

About me

- Born and raised in Italy
- Laurea degree (MSEE) and PhD in Electrical Engineering from University of Bologna
- Author of several IEEE papers and conference talks about Semiconductor Devices
- Married and living in St Johns (Jacksonville) since 1997
- Licensed in 2003
- Been playing, writing code for SDRs since 2017

What is a Software Defined Radio (SDR)

- A Software Defined Radio is a radio where all (or some) of the 'radio' work (mixers, filters, demodulators, etc) is done in software instead of hardware
- The basic idea is to convert the signal (from the antenna for RX, from the microphone for TX) to 'numbers', and then let the software/computer work on those numbers

Traditional RX (Superheterodyne) vs SDR

SDR Concepts

SDR Concepts – analog vs digital

analogue signal digital signal

digital representation of signal

15 29 30 2 -18 -26 -14 5 25 27 13 -7 -22 -20 -4

SDR Concepts – Analog Digital Converter (ADC)

SDR Concepts – Sampling and Aliasing

- The Wagon Wheel effect
- Aliasing

• Nyquist zones

Credit: Science Buddies YouTube channel

SDR Concepts – I/Q (+ a tiny bit of complex numbers)

I/Q (in phase and quadrature)

SSB demodulation

Complex numbers – magnitude and phase

- AM demod = Magnitude (M)
- FM demod = Change in phase (ϕ) over time

SDR Concepts – Digital Signal Processing (DSP)

- Digital Signal Processing is the field of engineering and computer science that studies how to work with digital signals (i.e. streams of numbers)
- Using DSP we can create the digital equivalents of:
 - filters (<u>Finite Impulse Response</u>, <u>Infinite Impulse Response</u>)
 - mixers (frequency shifting)
 - demodulators
 - noise removers, noise blankers, equalizers, etc
- 99% of DSP operations is just add (+) and multiply (x)

SDR Concepts – Fourier Transform (FT & FFT)

• Fourier Transform (FT) is the mathematical equation/method of transforming a signal from the time domain to the frequency domain

- In 1965 Cooley and Tukey (re)discovered a very efficient way to compute the FT, known as the Fast Fourier Transform (FFT)
- Without FFT we probably wouldn't have SDRs!

Why SDR?

Why SDR? - See signals with your eyes

Frequency spectrum and waterfall

Why SDR? - Multiple receivers for free

Why SDR? - 'brick-wall' filters

Flex SDR-5000 2.8kHz SSB filter

Why SDR? - Flexibility and versatility

- In a SDR all the parts written in software can be easily changed and upgraded:
 - new and better filters
 - new modulation schemes (for instance with a traditional radio it is not possible to add SSB to a FM only radio)
 - radio controls (buttons, knobs) can be changed to better fit the usage
 - less obsolescence
 - greater scope for experimentation

Why SDR? - record whole band(s) now; tune later

- With an SDR it is possible to write to a file the raw I/Q recording of a whole band (or multiple bands depending on the sample rate of the SDR)
- Days, months, years later one can 'play' that recording to tune and demodulate signals as if they were there at the time the recording was taken

Why SDR? - Diversity reception

- Diversity reception combines the signals from two synchronized receivers (connected to two different antennas)
- Can be used for local noise cancellation

Why SDR? - Other advantages

- No need for sound cards interfaces
- Very flexible using virtual audio cables (VACs)
- Remote operation out of the box
- Lighter and more portable than a traditional radio

Why SDR? - Caveats

- Real ones:
 - Lack of physical controls (knobs, buttons, etc) but one can add them (e.g. Tmate 2)
 - Latency (both intrinsic and due to buffers) but see WDSP by Warren Pratt, NR0V
 - ADC overflow → heavy distortion (RF gain is important)
- Not really (or no longer) a problem:
 - Requires a computer (c'mon it's 2023!)
 - Cost (true perhaps 10 years ago; not any more)
 - Learning curve (but the same can be said of many radios)

Why SDR? - They can help with TX too!

- According to Rob Sherwood NC0B: "Receivers today have vastly improved. Transmitters have gotten worse!"
- SDR "adaptive pre-distortion" systems like PureSignal can help clean up the TX signal (especially with PA)

Apache with Pure Signal

Kenwood

- Receive TV and Radio in areas where DVB and DAB are present.
- Receive amateur television transmissions.
- Listening to unencrypted Police/Ambulance/Fire/EMS conversations.
- Listening to aircraft traffic control conversations.
- Tracking aircraft positions like a radar with ADS-B decoding.
- Decoding aircraft ACARS short messages.
- Scanning trunking radio conversations.
- Decoding unencrypted digital voice transmissions.

- Tracking ship movement with AIS decoding.
- Decoding POCSAG/FLEX pager traffic.
- Scanning for cordless phones and baby monitors.
- Tracking and receiving meteorological agency launched weather balloon data.
- Receiving HF weatherfax.
- Receiving NOAA weather satellite images.
- Monitor amateur frequencies
- APRS Rx Gateway

- Noise Sniffer
- Tracking your own self launched high altitude balloon for payload recovery.
- Receiving wireless temperature sensors and wireless power meter sensors.
- Listening to HF/VHF/UHF/Microwave amateur radio.
- Oh, and LF now too!
- Decoding APRS data.
- Watching Digital Amateur TV.
- Sniffing GSM signals.

- Using rtl-sdr on your Android device as a portable radio scanner.
- Receiving GPS signals and decoding them.
- Receiving Inmarsat transmissions
- Using rtl-sdr as a spectrum analyzer.
- Listening to satellites and the ISS.
- Receiving Outernet transmissions
- Radio astronomy.
- Monitoring meteor scatter.

- Decoding satellite message traffic
- Cross band repeater
- WSPR signal reception.
- FUNCube Satellite monitoring.
- Listening to FM radio, and decoding RDS information.
- Listening to and looking at DAB broadcast radio signals.
- Use rtl-sdr as a panadapter for your traditional hardware radio.
- Decoding taxi mobile data terminal signals.

- Use rtl-sdr as a high quality entropy source for random number generation.
- Use rtl-sdr as a noise figure indicator.
- Reverse engineering unknown protocols.
- Triangulating the source of a signal (RDF).
- Searching for RF noise sources.
- Characterizing RF filters and measuring antenna SWR.
- Decoding digital amateur radio ham communications such as CW/PSK/RTTY/SSTV.
- Receiving Digital Radio Mondial shortwave radio (DRM).

- Listening to international shortwave radio.
- Looking at RADAR signals
- Decoding telemetry
- Over the horizon (OTH) radar, HAARP
- Detecting Meteor 'echos'
- Monitoring the local RF environment
- Detecting and deciphering digital RF transmissions
- Decoding keyfob transmissions

- Examining DECT transmissions
 - Glider tracking as part of the Open Glider Network
 - Examining Rail Road data transmissions
 - Listening to smart meter transmissions
 - Detecting wireless doorbell transmissions
 - Monitoring 2.4GHz wireless video transmissions
 - ...just to start the list

SDR Architectures

SDR Architectures – Direct Sampling

A Simple Digital SDR

- Why Not ?
 - Let's say ... DC ~ 6 meters.
 - Spurious Free Dynamic Range ~ 100 dB. LTC2208 ADC 16 bits.
 - Nyquist criteria: Fsample > 2 * maximum frequency.
 - Fsample > 54 MHz * 2 = 108 Ms/s.
 - Common sample rate: 122.88 Ms/s (harmonically related to 48K).
 - 16 bits * 122.88 MHz = 1.966 Gigabits / second to the computer.
 - Add in IP & Ethernet overhead: 3 x Gigabit Ethernet, or 1 x 10GE.
 - It's a FIREHOSE !!
 - Whoa ! Gulp. Help. Open the pod bay doors, HAL.

SEA-PAC 2016 Friday Workshop

SDR Architecture – Direct conversion

2. Homodyne Digital SDR Receiver

- Essentially a Direct-Conversion receiver.
- Down convert R.F. to Zero I.F. (Open HPSDR, Flex 6000, many others).
 - •SSB & CW don't require demodulation filter, decimate, and send to speaker.
 - •Need a way to reject opposite sideband (negative frequencies):
 - Weaver method, Complex Filter method, Phasing method (Hilbert).
 - FM requires demodulation, AM usually best when demodulated.
- Typical Passband: Minus 192 KHz to Plus 192 KHz. of the channel. Selectable via Decimation Ratio.
- Typical ADC: 14 or 16 bits. Baseband is ~24 bits (achieved via decimation).
- Very high opposite sideband rejection without adjustment.
- I/O to Computer: 384 Ksps \rightarrow about 19 Megabits/sec

SEA-PAC 2016 Friday Workshop

SDR Architectures: Hybrid conversion

3. Hybrid Conversion SDR Receiver

SEA-PAC 2016 Friday Workshop

Credit: Tom McDermott N5EG – SDR from DC to (almost) Daylight

Let's do SDR!

Let's do SDR! - \$0 - Web SDRs

- Web SDRs are a very easy way to get started with SDRs at no cost; just open your browser, click on the station and listen
- The mother of all Web SDRs: http://websdr.ewi.utwente.nl:8901/
- Northern Utah WebSDR: http://www.sdrutah.org/

Your name or callsign: K4VZ			
View: O others slow o one band O blind Allow keyboard:	Waterfall: O Java	●HTML5 Sound: ○Java ●HTML5	Firefox/Mozilla audio start
000 7100 710 7200 7200 WSI (22) WIAW 720 7250 MISS Do Nothing US1 (22) WIAW 720 7250 MISS 0154 UTC 2054 Local (Your computer) Want to listen on a different antenna?	TZSO		
Frequency: 7272.000 kHz VFO: A (th: 7272.00 kHz USD) Enter frequency: above, or tune by clicking dragging/scrollwheel on the frequency scale. Mode: LSB C2.5K (-500 - 50 - 10) 1 =kHz + 1 + 10 + 50 + 500 + 22.5K VFO: A/B A=B B=A Use the +ktb button to map to the nearest kHz. • • • • 200M 630M 160M • AM-160M-120M • 80-75M • 60M-49M • 40M The bands in bold use high-performance receivers. Please use only gng server at a time? • Clicking a hand below will switch to the Green WebSDR (#2) with its Omnidirectional antennas: 30M 00H + 17M 15M 12M 10M + 10 0M + 10M • 10M + 10M 1	Audio Duffering: + 250m + 140 + 140	Waterfall view: [zoom out] zoom in [max out] max in Or use scoll wheel & dragging on waterfall. Speed: [medium ~ Size: [medium ~ View: [waterfall ~ Hide labels Toggle "Hide labels" If labels are missing.	

Let's do SDR! - \$0 – more WebSDRs

OpenWebRX https://www.receiverbook.de/

KiwiSDR http://kiwisdr.com/public/

Let's do SDR! - \$30-100 - RTL-SDR (USB dongle)

- very inexpensive (starts from about \$30)
- based on DVB-T/DAB receiver on a USB dongle
- 24MHz 1766MHz (HF with upconverter)
- 8bit resolution
- very popular
- lots of clones
- KrakenSDR uses 5 RTL-SDR 'phase coherent'

Let's do SDR! - \$100-300 – SDRplay, Airspy, etc

- SDRplay RSPs:
 - 1kHz 2GHz
 - sample rate up to 10MHz
 - resolution up to 14bit
 - good RF filters (per band)
 - AM notch, FM notch
 - multiple antenna ports
 - good as a panadapter
 - RSPduo is dual tuner

- Also consider:
 - Airspy HF+ Discovery
 - Analog Devices Adalm Pluto
 - HackRF One
 - RX888 MkII

Let's do SDR! - \$500-5000+ - bladeRF, Red Pitaya, Perseus, USRP, etc

- Direct sampling
- 16bit 125Msps ADC
- FPGA for Digital Down Conversion
- Multiple channels
- Can be very specialized
- Used in industry and academia
- Used by radio amateurs too!

Let's do SDR! - SDR Transceivers - FlexRadio

FLEX-6400M (\$3450)

0

FLEX-6700 (\$7500)

Let's do SDR! - Transceivers – Apache Labs

ANAN-8000DLE (\$3800)

ANDROMEDA (\$4400)

Let's do SDR! - Icom

IC-7300 (\$1100)

IC-7610 (\$3250)

38

IC-705 (\$1350)

Let's do SDR! - Yaesu

FTDX101D (\$3700)

Let's do SDR! - Elecraft

K4 (\$4500)

Let's do SDR! - Hermes Lite 2

- Fully open source
- Reasonably priced (\$300)
- Direct up/down conversion
- AD9866 + FPGA
- 0-38MHz
- 5W out
- 4 slice receivers

Let's do SDR! Software

SDR Software - Windows

HDSDR

SDR Console

SDRSharp

SDR Software – Multiplatform (Windows, Mac, Linux)

CubicSDR

Linrad

SDR Software – Build your own SDR!

GNU Radio

Live demo with SDRuno and RSPdx

References

References – To learn more on SDR

• SDR

- Marc Lichtman PySDR: A Guide to SDR and DSP using Python https://pysdr.org/index.html
- Michael Ossman Software Defined Radio with HackRF (videos) https://greatscottgadgets.com/sdr/
- Art Pini Learn the Fundamentals of Software-Defined Radio https://www.digikey.com/en/articles/learn-the-fundamentals-of-software-defined-radio
- Panoradio SDR SDR Basics https://panoradio-sdr.de/category/sdr-basics/
- Analog Devices Software-Defined Radio for Engineers (2018) https://www.analog.com/en/education/education-library/software-defined-radio-for-engineers.html

• DSP

- Richard Lyons Quadrature Signals: Complex, But Not Complicated https://dspguru.com/files/QuadSignals.pdf
- W2AEW Basics of IQ Signals and IQ modulation & demodulation A tutorial (video) https://youtu.be/h_7d-m1ehoY
- All About Circuits Understanding Quadrature Demodulation https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-demodulation/understanding-quadrature-demodulation/
- Steven W. Smith The Scientist and Engineer's Guide to Digital Signal Processing http://www.dspguide.com/
- Mentioned in tonight presentation
 - RJ Hopper RF sampling: aliasing can be your friend https://e2e.ti.com/blogs_/b/analogwire/posts/rf-sampling-aliasing-can-be-your-friend
 - Rob Sherwood NC0B Transceiver Performance for the HF DX & Contest Operator https://www.slaarc.com/wp-content/uploads/2021/04/NC0B-SLAARC-1m.pdf
 - Warren C. Pratt NR0V WDSP 2018 What's new (video) https://youtu.be/THPjQV3I81g

References – Presentations on SDR

- John Ackermann N8UR TAPR: Tomorrow's Ham Radio Technology Today https://www.febo.com/hamdocs/TAPR-MVUS-Presentation.ppt
- Loren Anderson KEØHZ Software Defined Radios; Getting Started With SDR https://w0tlm.com/sites/default/files/2022-12/SDR221121Final.pdf
- Jeffrey Bail NT1K SDR & Flex Radio; Is It The Future Of Amateur Radio? http://www.hcra.org/wp-content/uploads/2022/02/SDR-and-Flex.pdf
- Alan Betts G0HIQ Syllabus 2019: Model Tutorial for Digital and SDR extracts (for Foundation, Intermediate and Full licences) https://rsgb.services/public/exams/presentations/190329%20SDR%20Model%20Presentation%20Slides%20-%20Website.pptx
- Steven Bible N7HPR Introduction to Software Defined Radios https://www.qsl.net/n9zia/sdr.pdf
- Bill Craft KD2HIQ Software Defined Radios https://w5sc.org/wp-content/uploads/2023/01/SDR-RX-only.pdf
- Steve Dick K1RF Software Defined Radio (SDR) for Amateur Radio An Overview http://gnarc.org/wp-content/uploads/2015/02/Software-Defined-Radio-SDR-for-Amateur-Radio-2015-02-11.pdf
- Lior Elazary KK6BWA Introduction to Software Defined Radio (SDR) http://www.cvarc.org/resources/Tech_Articles/IntroToSDR.pdf
- Andrew Gawthrope G0RVM SDR https://www.tsgarc.uk/wp-content/uploads/2016/08/sdr1.pdf
- Don Gibson KJ6FO- Software Defined Radio SDR http://squirrelengineering.com/wp-content/uploads/2020/02/Software-Defined-Radio.pptx
- Brandon Graham W0GPR Software Defined Radio (SDR) and its Implementation https://fb3d1a95b6.clvaw-cdnwnd.com/03aea700bf1764bea2c547f0b88a7406/200000440-2f90b308e9/SDR%20Presentation%20Brandon%2 0Graham%20W0GPR%20Feb%202015.pptx

References – Presentations on SDR

- Grant Hopper KB7WSD SDR Radio Dongles https://microhams.blob.core.windows.net/content/2017/03/RTL-SDR-dongle.pdf
- Ria Jairam N2RJ SDR 101 https://www.dropbox.com/sh/u8a9q5ifmz00oxx/AAC9n5gxzkr82grvJmkCgpXIa/SDR-101%20Presentation.pdf
- Gerry Jurrens N2GJ Getting Started With SDR https://www.nm5hd.com/documents/PRESENTATIONS/20190420_SDR_Presentation.pdf
- Jon Longtin KB8LFP SDR Radios: One Ham's Perspective http://www.rcarc.org/presentations/W2RC%20SDR%20Jan%202019%20presentation.pdf
- Lyle K0LR Software Defined Radio http://www.radioham.org/radioham_files/wp-content/uploads/2015/04/SARA-SDR.pdf
- Ben Matthews Practical SDR With OpenWebRx https://www.rmham.org/wp-content/uploads/2022/04/PracticalSDR.pdf
- Tom McDermott N5EG SDR from DC to (almost) Daylight https://web.tapr.org/~n5eg/index_files/SDR%20from%20DC%20to%20Daylight.pdf
- John Melton G0ORX/N6LYT High Performance Software Defined Radio (HPSDR) http://oshug.org/presentations/OSHUG5_HPSDR.pdf
- Owen Morgan KF5CZO Software Defined Radio https://www.katyars.com/wp-content/uploads/2018/08/Software-Defined-Radio-Presentation.pdf
- Gordie Neff N9FF Software Defined Radio Primer + Project https://w4cae.com/wp-content/uploads/2016/03/SDR_Presentation_Final_Neff_CARC_Mar_2016-1.pdf

References – Presentations on SDR

- Niko AA2NI SDR, HDSDR & CW Skimmer SoftRock Ensemble II Receiver https://www.bara.org/wp-content/uploads/2014/10/AA2NI_SDR_Presentation.pdf
- Jon Pawlik AE2JP Software Defined Radio: State-of-the-Art & State-of-the-Future https://nparc.org/2014/Presentations2014/SDR_SOTAandSOTF.pdf
- Cliff Pulis KE0CP Software Defined Receiver (SDR) https://kc5our.com/wordpress/wp-content/uploads/2013/03/Software-Defined-Receiver.pdf
- Rob Sherwood NC0B Disruptive Technologies; How they change our hobby https://www.contestuniversity.com/wp-content/uploads/2017/06/NC0B_CTU_2017_Disruptive_Technologies_How_they_Change_our_Hobby .pptx
- Bill Trippett W7VP, Adam Farson VA7OJ/AB4OJ, Rob Sherwood NC0B How important are receiver performance criteria in an era of software defined radios? https://www.ab4oj.com/sdr/seapac17/sdrpres14.pdf
- Ryan Tucker W2XH Exploring RF with Software Defined Radio https://www.rochesterham.org/meetings/2015-12_SDR_Program.pdf
- Ethan Waldo KF5UFH An Amateur's amateur guide to Software Defined Radio (SDR) https://doc.lagout.org/electronics/AustinHams%20SDR.pdf
- Howard White KY6LA Modern Radio's SDR-101 https://wparc.us/presentations/Modern%20Radio%20SDR-101%20V1-2.pdf
- Tye Winkel KC8YEJ, John Oynoian KE8CTQ Software Defined Radio (SDR) http://www.k8utt.org/Presentations/Software_Defined_Radio%20_Overview_.pptx
- Steve Yothment W4OGM Software-Defined Radio (SDR) https://kk4gq.org/pdf/Software-Defined-Radio-W4OGM-March-2021.pdf